Abstract
It is well known that precipitation rate estimation is poor over land. Using the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) and TRMM Microwave Imager (TMI), the performance of the TMI rain estimation was investigated. Their differences over land were checked by using the orbit-by-orbit data for June 1998, December 1998, January 1999, and February 1999, and the following results were obtained: 1) Rain rate (RR) near the surface for the TMI (TMI-RR) is smaller than that for the PR (PR-RR) in winter; it is also smaller from 0900 to 1800 LT. These dependencies show some variations at various latitudes or local times. 2) When the storm height is low (8 km), the PR-RR is smaller. These dependencies of the RR on the storm height do not depend on local time or latitude. The tendency for a TMI-RR to be smaller when the storm height is low is more noticeable in convective rain than in stratiform rain. 3) Rain with a lo... Abstract It is well known that precipitation rate estimation is poor over land. Using the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) and TRMM Microwave Imager (TMI), the performance of the TMI rain estimation was investigated. Their differences over land were checked by using the orbit-by-orbit data for June 1998, December 1998, January 1999, and February 1999, and the following results were obtained: 1) Rain rate (RR) near the surface for the TMI (TMI-RR) is smaller than that for the PR (PR-RR) in winter; it is also smaller from 0900 to 1800 LT. These dependencies show some variations at various latitudes or local times. 2) When the storm height is low (8 km), the PR-RR is smaller. These dependencies of the RR on the storm height do not depend on local time or latitude. The tendency for a TMI-RR to be smaller when the storm height is low is more noticeable in convective rain than in stratiform rain. 3) Rain with a lo...