Analysis of intracellular storage and regulated secretion of 3 von Willebrand disease–causing variants of von Willebrand factor

Abstract
The rapid exocytosis of von Willebrand factor (VWF) in response to vascular injury can be attributed to the fact that VWF is stored in the Weibel-Palade bodies (WPBs) of endothelial cells. We describe a system for examining the ability of VWF to drive both the formation of a storage compartment and the function of that compartment with respect to regulated secretion. Transient transfection of HEK293 cells with wild-type human VWF cDNA leads to the formation of numerous elongated organelles that resemble WPBs. These “pseudo-WPBs” exhibit the internal structure, as well as the ability to recruit membrane proteins including P-selectin, of bona fide WPBs. Finally, VWF was efficiently secreted upon stimulation by phorbol ester. We used this system to examine 3 VWF mutations leading to von Willebrand disease that affect VWF multimerization and constitutive secretion. Surprisingly we find that all 3 mutants can, to some extent, make pseudo-WPBs that recruit appropriate membrane proteins and that are responsive to secretagogues. The most striking defects are a delay in formation and a reduction in the length and number of pseudo-WPBs in proportion to the clinical severity of the mutation. Studies of pseudo-WPB formation in this system thus yield insights into the structure-function relationships underpinning the ability of VWF to form functional WPBs. (Blood. 2003;102:2452-2458)