Determining fracture facet crystallography using electron backscatter patterns and quantitative tilt fractography

Abstract
A methodology is presented to characterize the crystallography of individual fracture surface facets. Electron backscatter patterns (EBSP's) from a metallographic section through a facet identify grain orientation, and quantitative tilt fractography identifies facet orientation; these results are combined to establish fracture facet crystallography. For this technique, facet electropolishing is not required, the facet alignment procedure is accurate and quick, and the method can be generalized to different microstructures, test environments, or facet orientations. Method accuracy is illustrated for 25 to 50 μm fatigue crack facets in an unrecrystallized Al–Li–Cu alloy (AA2090) that has 5 μm thick subgrains in elongated grains that are 10 to 200 μm thick. The fine subgrain structure and tortuous fatigue crack profile precludes the use of other diffraction techniques for determining AA2090 facet crystallography. EBSP and tilt fractography results demonstrate that vacuum fatigue cracks in AA2090 are nearly parallel to local {111} planes.