Inorganic Nitrogen Removal from Wastewater: Effect on Phytoplankton Growth in Coastal Marine Waters

Abstract
Algal bioassays were used to demonstrate the high efficiency of a comnbined tertiary wastewater treatment and marine aquaculture system in removing inorganic nitrogen, and to show that the coastal waters off Woods Hole, Massachusetts, are limited in nitrogen for marine phytoplankton growth. When nutrients were removed from secondarily treated domestic wastewater through assimilation by phytoplankton in an outdoor growth pond, the pond effluent, in varying dilutions with seawater, could not support more phytoplankton growth than the seawater alone. However, when nitrogen was added back to the mixtures of pond effluent and seawater, the phytoplankton growth response was similar to that with a mixture of wastewater and seawater. This is similar to the findings of other researchers, and suggests that nitrogen may be the key growth-limiting nutrient in many coastal marine waters. The combined tertiary treatment-marine aquaculture system appears to be an effective means of removing nitrogen from secondarily treated wastewater and controlling eutrophication of coastal marine waters.