An Elastic–Viscoplastic Model for Excised Facial Tissues

Abstract
Unified constitutive equations for elastic–viscoplastic materials were modified and used to model the highly nonlinear elastic and rate-dependent inelastic response exhibited in recent experiments on excised facial tissues. These included the skin and the underlying supportive tissue SMAS (the Superficial Musculoaponeurotic System). This study indicates a number of relevant results: The skin is more strain rate dependent than the SMAS; the nonlinearity of the elasticity of the skin is greater than that of the SMAS; both tissues exhibit a hardening effect indicated by increased resistance to inelastic deformation due to stress acting over a time period; the hardening effect leads to a decrease in time dependence and an increased elastic range, which is more pronounced for SMAS. Consequently, the SMAS can be viewed as the firmer elastic foundation of the more viscous skin. Moreover, the relaxation time for the skin is fairly short so the skin would be expected to conform to the deformation of the SMAS if it remained attached to the SMAS during stretching. This is relevant when it is undesirable to separate the skin from the SMAS for physiological reasons.