A plea for intra-laboratory reference limits. Part 2. A bimodal retrospective concept for determining reference limits from intra-laboratory databases demonstrated by catalytic activity concentrations of enzymes
Top Cited Papers
- 1 January 2007
- journal article
- Published by Walter de Gruyter GmbH in cclm
- Vol. 45 (8) , 1043-57
- https://doi.org/10.1515/cclm.2007.250
Abstract
The current recommendations for establishing intra-laboratory reference limits (RLs) cannot be fulfilled by most laboratories because of the expense involved. In the current study, a bimodal method was developed to derive RLs from data stored in a laboratory information system without any assumption concerning the distribution of the diseased subgroup. A smoothed kernel density function (D(mix)) was estimated for the distribution of combined data for non-diseased and diseased adult subjects. It was assumed that the "central" part of the distribution represents the non-diseased population, which was defined and used to estimate a Gaussian distribution of either the original values or Box-Cox transformed data. This normal distribution was now considered the distribution of the non-diseased subgroup (D(nd)). Percentiles were calculated to obtain retrospective RLs. The density function of the diseased subgroup (D(d)) was calculated by subtracting the non-diseased density function from D(mix) (D(d)=D(mix)-D(nd)). The intersection point of the D(nd) and D(d) curves identified the RL with the highest diagnostic efficiency. The model was applied to catalytic activity concentrations of several enzymes with data from different laboratories. The RLs obtained were similar to recently published consensus values. Differences between laboratories were small but significant. Gender stratification was necessary for alanine aminotransferase (ALT), aspartate aminotransferase (AST), and gamma-glutymaltransferse (gamma-GT), not significant for lipase and amylase and inconsistent among the laboratories for alkaline phosphatase (AP) and lactate dehydrogenase (LDH). Age stratification was only tested for two groups (18-49 and >or=50 years) and was significant for AST (females only), gamma-GT and lipase, not significant for amylase and inconsistent for AP, LDH and ALT. For gamma-GT, further stratification for age in decades was necessary for males. Creatine kinase MB (CK-MB) values were not stratified owing to the low number of data available. Retrospective RLs derived from intra-laboratory data pools for the catalytic activity concentration of enzymes using a modified procedure plausibly agreed with published consensus values. However, most RLs varied significantly among laboratories, thus supporting the "old" plea for intra-laboratory RLs.Keywords
This publication has 21 references indexed in Scilit:
- A plea for intra-laboratory reference limits. Part 1. General considerations and concepts for determinationcclm, 2007
- IFCC primary reference procedures for the measurement of catalytic activity concentrations of enzymes at 37°C: International Federation of Clinical Chemistry and Laboratory Medicine (IFCC): Scientific Division, Committee on Reference Systems for Enzymes (C-RSE): Part 8. Reference procedure for the measurement of catalytic concentration of α-amylase: [α-Amylase: 1,4-α-D-glucan 4-glucanohydrolase (AMY), EC 3.2.1.1]cclm, 2006
- Use of total patient data for indirect estimation of reference intervals for 40 clinical chemical analytes in Turkeycclm, 2006
- Consensus of DGKL and VDGH for interim reference intervals on enzymes in serum Konsensus von DGKL und VDGH zu vorläufigen Referenzbereichen für SerumenzymeJournal of Laboratory Medicine, 2005
- The Nordic Reference Interval Project 2000: recommended reference intervals for 25 common biochemical propertiesScandinavian Journal of Clinical and Laboratory Investigation, 2004
- IFCC Primary Reference Procedures for the Measurement of Catalytic Activity Concentrations of Enzymes at 37C. Part 6. Reference Procedure for the Measurement of Catalytic Concentration of γ-Glutamyltransferasecclm, 2002
- IFCC Primary Reference Procedures for the Measurement of Catalytic Activity Concentrations of Enzymes at 37°C. Part 5. Reference Procedure for the Measurement of Catalytic Concentration of Aspartate Aminotransferasecclm, 2002
- IFCC Primary Reference Procedures for the Measurement of Catalytic Activity Concentrations of Enzymes at 37°C. Part 4. Reference Procedure for the Measurement of Catalytic Concentration of Alanine Aminotransferasecclm, 2002
- IFCC Primary Reference Procedures for the Measurement of Catalytic Activity Concentrations of Enzymes at 37°C. Part 3. Reference Procedure for the Measurement of Catalytic Concentration of Lactate Dehydrogenasecclm, 2002
- Polymorphism of Apoprotein E (APOE), Methylenetetrahydrofolate Reductase (MTHFR) and Paraoxonase (PON1) Genes in Patients with Cerebrovascular Diseasecclm, 2001