Morphology of the abdominal wall in the bat,Pteronotus parnellii (Microchiroptera: Mormoopidae): Implications for biosonar vocalization

Abstract
We investigated the structure of the abdominal wall of Pteronotus parnellii and made comparisons with eight other species of Microchiroptera and one megachiropteran. Similar to other mammals, the abdominal wall of bats consists of the three flank muscles laterally and the m. rectus abdominis ventrally. In Microchiroptera, flank muscles are mostly confined to dorsal portions of the wall. The mm. transversus abdominis and obdominis and obliquus internus abdominis form the bulk of the wall; the m. obliquus externus is poorly developed. Ventrolaterally, a large portion of the wall is a dense, bilaminar aponeurosis, composed of collagen, elastin, and fibroblasts. The thicker, superficial lamina derives from the mm. obliquus internus and transversus abdominis. The deep lamina is a continuation of the transversalis fascia. Collagen fibers of the two fused laminae are oriented orthogonally, resulting in a resilient, composite fabric. Fascicles of the flank muscles are oriented along the margins of the aponeurosis so that their forces appear to be concentrated onto the aponeurosis. We suggest that this system is adapted for the regulation and generation of intra‐abdominal pressure. The abdominal wall of Pteropus, the one megachiropteran examined, lacks the derived aponeurosis and is similar to other mammals. We consider the abdominal wall of Microchiroptera to be analogous to the diaphragma, in that it functions in the regulation of pressure within body cavities and facilitates biosonar vocalization.

This publication has 5 references indexed in Scilit: