Nonenzymatic biotinylation of histone H2A
Open Access
- 15 December 2008
- journal article
- research article
- Published by Wiley in Protein Science
- Vol. 18 (2) , 314-328
- https://doi.org/10.1002/pro.37
Abstract
Holocarboxylase synthetase (HCS, eukaryotic enzyme) and BirA (prokaryotic) are biotin protein ligases that catalyze the ATP-dependent attachment of biotin to apocarboxylases via the reactive intermediate, bio-5′-AMP. In this study, we examined the in vitro mechanism of biotin attachment to histone H2A in the presence of HCS and BirA. The experiment derives from our observations that HCS is found in the nucleus of cells in addition to the cytoplasm, and it has the ability to attach biotin to histones in vitro (Narang et al., Hum Mol Genet 2004; 13:15–23). Using recombinant HCS or BirA, the rate of biotin attachment was considerably slower with histone H2A than with the biotin binding domain of an apocarboxylase. However, on incubation of recombinant H2A with chemically synthesized bio-5′-AMP, H2A was observed to be rapidly labeled with biotin in the absence of enzyme. Nonenzymatic biotinylation of a truncated apocarboxylase (BCCP87) has been previously reported (Streaker and Beckett, Protein Sci 2006; 15:1928–1935), though at a much slower rate than we observe for H2A. The specific attachment sites of nonenzymatically biotinylated recombinant H2A at different time points were identified using mass spectrometry, and were found to consist of a similar pattern of biotin attachment as seen in the presence of HCS, with preference for lysines in the highly basic N-terminal region of the histone. None of the lysine sites within H2A resembles the biotin attachment consensus sequence seen in carboxylases, suggesting a novel mechanism for histone biotinylation.Keywords
This publication has 48 references indexed in Scilit:
- Effects of the SANT Domain of Tension-Induced/Inhibited Proteins (TIPs), Novel Partners of the Histone Acetyltransferase p300, on p300 Activity and TIP-6-Induced AdipogenesisMolecular and Cellular Biology, 2008
- Nonenzymatic biotinylation of a biotin carboxyl carrier protein: Unusual reactivity of the physiological target lysineProtein Science, 2006
- The tale beyond the tail: histone core domain modifications and the regulation of chromatin structureNucleic Acids Research, 2006
- PancreatoblastomaActa Cytologica, 2003
- Empirical Statistical Model To Estimate the Accuracy of Peptide Identifications Made by MS/MS and Database SearchAnalytical Chemistry, 2002
- Biotin in Metabolism and Its Relationship to Human DiseaseArchives of Medical Research, 2002
- Translating the Histone CodeScience, 2001
- High-throughput mass spectrometric discovery of protein post-translational modificationsJournal of Molecular Biology, 1999
- Mechanism of the Reaction Catalyzed by Acetoacetate Decarboxylase. Importance of Lysine 116 in Determining the pKa of Active-Site Lysine 115Biochemistry, 1996
- Biotinidase deficiency: A novel vitamin recycling defectJournal of Inherited Metabolic Disease, 1985