Electron-microscopic studies on developing intramural ganglia of the small intestine in human and rabbit fetuses
- 1 January 1975
- journal article
- Published by S. Karger AG in Cells Tissues Organs
- Vol. 91 (3) , 429-454
- https://doi.org/10.1159/000144404
Abstract
Electron-microscopic studies were made on the appearance of synapses in the intramural ganglion (Auerbach) and findings were correlated with the onset and development of intestinal peristalsis in 6- to 30-week-old human and rabbit fetuses from the 12th day after conception until birth. At stage I, in which the small intestine shows no indication of a muscle layer or spontaneous peristalsis, primitive synapses containing several clear vesicles and a few cored vesicles are seen on neuroblasts and their processes (dendrites). At stage II, in which the circular muscle is developed and bidirectional peristalsis occurs, synaptic profiles can be classified into 3 types. Type 1 is the most numerous but seldom shows membrane specificity on the synaptic portion. Types 2 and 3 have small flattened vesicles and small round vesicles, respectively. They are further characterized by thickening of snyaptic membranes and aggregation of small clear vesicles associated with the presynaptic membrane. At stage III, the longitudinal muscle layer develops in the small intestine. At this stage, nerve terminals containing mainly cored vesicles have been observed and classified into types 4 and 5, according to their morphology. At stage IV, antiperistalsis no longer occurs and type 6 nerve terminals in the intramural ganglia can be recognized by their densely packed, large-cored vesicles. The possible physiological significance of the nerve terminals has been discussed.Keywords
This publication has 0 references indexed in Scilit: