Abstract
This paper presents incompressible laminar boundary-layer results on both the leeside and windside of a prolate spheroid. The results are obtained by an implicit finite difference method of the Crank–Nicolson type. Particular attention has been given to the determination of separation and of embedded streamwise vortices. No restriction on the angle of attack or the thickness ratio is imposed, nor are there invoked any of the common assumptions such as similarity, conical flow and others. The results suggest an embedded vortex region existing between the regular boundary-layer region and the separated region. At higher angle of attack, the vortex region becomes so thick that it itself may be more appropriately called ‘separated’ also. The latter possibility leads to questions of applicability for existing theories on three-dimensional separation.

This publication has 6 references indexed in Scilit: