Finiteness in the Minimal Models of Sullivan
- 1 June 1977
- journal article
- Published by JSTOR in Transactions of the American Mathematical Society
- Vol. 230, 173-199
- https://doi.org/10.2307/1997716
Abstract
Let X be a 1-connected topological space such that the vector spaces <!-- MATH ${\Pi _ \ast }(X) \otimes {\mathbf{Q}}$ --> and <!-- MATH ${H^\ast}(X;{\mathbf{Q}})$ --> are finite dimensional. Then <!-- MATH ${H^\ast}(X;{\mathbf{Q}})$ --> satisfies Poincaré duality. Set <!-- MATH ${\chi _\Pi } = \sum {( - 1)^p}\dim {\Pi _p}(X) \otimes {\mathbf{Q}}$ --> and <!-- MATH ${\chi _c} =$ --> <!-- MATH $\sum {( - 1)^p}\dim {H^p}(X;{\mathbf{Q}})$ --> . Then <!-- MATH ${\chi _\Pi } \leqslant 0$ --> and <!-- MATH ${\chi _c} \geqslant 0$ --> . Moreover the conditions: (1) <!-- MATH ${\chi _\Pi } = 0$ --> , (2) <!-- MATH ${\chi _c} > 0,{H^\ast}(X;{\mathbf{Q}})$ --> 0,{H^\ast}(X;{\mathbf{Q}})$"> evenly graded, are equivalent. In this case <!-- MATH ${H^\ast}(X;{\mathbf{Q}})$ --> is a polynomial algebra truncated by a Borel ideal.
Keywords
This publication has 1 reference indexed in Scilit:
- Infinitesimal computations in topologyPublications mathématiques de l'IHÉS, 1977