Estimation of a Covariance Matrix Using the Reference Prior

Abstract
Estimation of a covariance matrix $\sum$ is a notoriously difficult problem; the standard unbiased estimator can be substantially suboptimal. We approach the problem from a noninformative prior Bayesian perspective, developing the reference noninformative prior for a covariance matrix and obtaining expressions for the resulting Bayes estimators. These expressions involve the computation of high-dimensional posterior expectations, which is done using a recent Markov chain simulation tool, the hit-and-run sampler. Frequentist risk comparisons with previously suggested estimators are also given, and determination of the accuracy of the estimators is addressed.

This publication has 0 references indexed in Scilit: