Abstract
Experimental studies of the formation of planar laminae by migration of low‐relief bed waves over aggrading upper‐stage plane beds show that the average thickness of laminae at a point increases with both aggradation rate and the variance of the heights of bed waves passing that point. In general, the preserved laminae represent only a small proportion (generally less than 50%) of the height of the largest bed waves in the population. The theory developed by Paola & Borgman (1991), relating the probability density function of stratal thickness to that of bed wave height for the case of no net aggradation, was adapted for aggrading conditions and shown to agree well with data. These results suggest that the theory can be used to estimate, from the distribution of thickness of planar laminae, either the distribution of bed wave heights, mean aggradation rate, mean bed wave length or mean bed wave celerity, provided the other parameters can be estimated.