PICOSECOND FLUORESCENCE KINETICS IN SPINACH CHLOROPLASTS AT LOW TEMPERATURE

Abstract
Abstract— At 77 K the fluorescence from spinach chloroplasts excited using picosecond mode‐locked laser pulses at 620 nm is made up of 5 separate kinetic components. Three of these are predominant at short wavelengths. between 650 and 690 nm, and they appear to correspond to the 3 decay phases seen at room temperature. The 2 new components. a 100 ps rise and a 3000 ps decay, characterize the longer (730–770 nm) wavelength fluorescence. The temperature dependence of the kinetic components of the long wavelength fluorescence shows that the 3000 ps decay accounts for essentially all of the large increase in fluorescence yield observed at low temperature. Furthermore, it appears that this increase does not result entirely from an increase in the fluorescence lifetime, as has been proposed. The dependences of these 2 new components (the 100 ps rise and 3000 ps decay) on emission wavelength and temperature are similar enough to suggest they have a common origin, presumably the chlorophyll pigment component C705. The amplitudes (yield/lifetime) of these 2 phases are approximately equal, and they are opposite in sign. Thus. we see evidence of time‐resolved excitation transfer from those pigment molecules that absorb the 620 nm radiation to those that give rise to the long wavelength fluorescence at low temperature.