Image retrieval with SVM active learning embedding Euclidean search

Abstract
Image retrieval with relevance feedback suffers from the small sample problem. Recently, SVM active learning has been proposed to tackle this problem, showing promising results. However, a small but sufficient number of initially labelled samples are still required to ensure subsequent ef- ficient active learning and good retrieval performance. In the existing method, the user is asked to label more im- ages before active learning starts. In this paper, a method of embedding Euclidean search into SVM active learning is proposed. With the help of Euclidean search, the adverse ef- fect on retrieval performance due to lack of initially labelled samples can be reduced. Experimental results demonstrate the improvement by the proposed method, especially when the number of initially labelled samples is small.

This publication has 5 references indexed in Scilit: