Intragenic suppression of a luxR mutation: Characterization of an autoinducer-independent LuxR
- 1 June 1995
- journal article
- Published by Oxford University Press (OUP) in FEMS Microbiology Letters
- Vol. 129 (1) , 97-101
- https://doi.org/10.1016/0378-1097(95)00145-u
Abstract
The Vibrio fischeri luminescence genes are activated by the LuxR protein and a diffusible signal termed the autoinducer. LuxR consists of two domains, a C-terminal transcriptional activator domain, and an N-terminal autoinducer-binding domain, which serves to regulate the function of the C-terminal domain. We have isolated and characterized an intragenic suppressor of a mutation that maps to the N-terminal domain and blocks autoinducer binding. The suppressor changes an alanine residue at position-221 in the C-terminal domain to a valine. In Escherichia coli, the suppressor allows partial activation of the V. fischeri luminescence genes although E. coli containing this protein remains unable to bind autoinducer. To further analyze the influence of the second-site mutation on luxR function, we constructed a luxR gene that coded for a protein with a wild-type N-terminal domain and with the ala-221 to val substitution in the C-terminal domain. This protein activated the luminescence genes in the presence or absence of autoinducer, and it bound autoinducer at levels comparable to the wild-type LuxR protein. Apparently, the alanine to valine substitution at position-221 allows activity of the C-terminal domain in a fashion independent of whether autoinducer is bound to the N-terminal domain.Keywords
This publication has 0 references indexed in Scilit: