Functional Effects of Mutations at F35 in the NH2-terminus of Kir6.2 (KCNJ11), Causing Neonatal Diabetes, and Response to Sulfonylurea Therapy
Open Access
- 1 June 2006
- journal article
- Published by American Diabetes Association in Diabetes
- Vol. 55 (6) , 1731-1737
- https://doi.org/10.2337/db05-1420
Abstract
Heterozygous mutations in the human Kir6.2 gene (KCNJ11), the pore-forming subunit of the ATP-sensitive K+ channel (KATP channel), cause neonatal diabetes. To date, all mutations increase whole-cell KATP channel currents by reducing channel inhibition by MgATP. Here, we provide functional characterization of two mutations (F35L and F35V) at residue F35 of Kir6.2, which lies within the NH2-terminus. We further show that the F35V patient can be successfully transferred from insulin to sulfonylurea therapy. The patient has been off insulin for 24 months and shows improved metabolic control (mean HbA1c 7.58 before and 6.18% after sulfonylurea treatment; P < 0.007). Wild-type and mutant Kir6.2 were heterologously coexpressed with SUR1 in Xenopus oocytes. Whole-cell KATP channel currents through homomeric and heterozygous F35V and F35L channels were increased due to a reduced sensitivity to inhibition by MgATP. The mutation also increased the open probability (PO) of homomeric F35 mutant channels in the absence of ATP. These effects on PO and ATP sensitivity were abolished in the absence of SUR1. Our results suggest that mutations at F35 cause permanent neonatal diabetes by affecting KATP channel gating and thereby, indirectly, ATP inhibition. Heterozygous F35V channels were markedly inhibited by the sulfonylurea tolbutamide, accounting for the efficacy of sulfonylurea therapy in the patient.Keywords
This publication has 29 references indexed in Scilit:
- Functional effects of KCNJ11 mutations causing neonatal diabetes: enhanced activation by MgATPHuman Molecular Genetics, 2005
- Activating Mutations in the Gene Encoding the ATP-Sensitive Potassium-Channel Subunit Kir6.2 and Permanent Neonatal DiabetesNew England Journal of Medicine, 2004
- Type 2 diabetes mellitus: not quite exciting enough?Human Molecular Genetics, 2004
- The N-Terminus of KIR6.2 Limits Spontaneous Bursting and Modulates the ATP-Inhibition of KATPChannelsBiochemical and Biophysical Research Communications, 1999
- MgATP activates the β cell K ATP channel by interaction with its SUR1 subunitProceedings of the National Academy of Sciences, 1998
- Neurotensin Inhibition of the Hyperpolarization‐Activated Cation Current (Ih) in the Rat Substantia Nigra Pars Compacta Implicates the Protein Kinase C PathwayThe Journal of Physiology, 1997
- Truncation of Kir6.2 produces ATP-sensitive K+ channels in the absence of the sulphonylurea receptorNature, 1997
- Adenosine Diphosphate as an Intracellular Regulator of Insulin SecretionScience, 1996
- Cloning and functional expression of the cDNA encoding a novel ATP‐sensitive potassium channel subunit expressed in pancreatic β‐cells, brain, heart and skeletal muscleFEBS Letters, 1995
- Reconstitution of I KATP : An Inward Rectifier Subunit Plus the Sulfonylurea ReceptorScience, 1995