Proteomic analysis of ampicillin‐resistant oral Fusobacterium nucleatum
- 19 December 2007
- journal article
- research article
- Published by Wiley in Oral Microbiology and Immunology
- Vol. 23 (1) , 36-42
- https://doi.org/10.1111/j.1399-302x.2007.00387.x
Abstract
Fusobacterium nucleatum represents one of the predominant anaerobic species in the oral microbiota. Penicillin-resistant F. nucleatum have been isolated from intra- and extraoral infections. This study aimed to assess ampicillin resistance in F. nucleatum by investigating the synthesis of resistance-associated proteins. Ampicillin-resistant and ampicillin-susceptible F. nucleatum isolates were obtained from 22 dental plaque samples. Two-dimensional gel electrophoresis and mass spectrometry were used to investigate bacterial protein synthesis. Proteins exhibiting statistically significant quantitative changes between sensitive and resistant isolates were identified using peptide mass mapping and matrix-assisted laser desorption/ionization - time of flight/time of flight (MALDI-TOF/TOF) mass spectrometry. Twenty-three F. nucleatum isolates were recovered from plaque samples and their ampicillin minimum inhibitory concentrations ranged between 0.125 microg/ml and 256 microg/ml. Analysis of the bacterial cellular proteins by two-dimensional gel electrophoresis resolved 154-246 distinct protein spots (mean 212, n = 9). Between 32% and 83% of the protein spots were common for the F. nucleatum isolates. Comparisons of the protein profiles of sensitive and resistant isolates revealed the presence of a 29 kDa protein and significant increases in the synthesis of two proteins at 37 and 46 kDa in the ampicillin-resistant F. nucleatum isolates. These proteins were identified as a class D beta-lactamase, ATP-binding cassette (ABC) transporter ATP-binding protein and enolase, respectively. Synthesis of a class D beta-lactamase by ampicillin-resistant F. nucleatum isolates could complicate antimicrobial treatment because these enzymes might confer resistance to many classes of beta-lactam antibiotics. The differences observed in protein synthesis between ampicillin-resistant and ampicillin-susceptible F. nucleatum may contribute to the antibiotic resistance and virulence of these bacteria.Keywords
This publication has 40 references indexed in Scilit:
- Genetic and Biochemical Characterization of FUS-1 (OXA-85), a Narrow-Spectrum Class D β-Lactamase fromFusobacterium nucleatumsubsp.polymorphumAntimicrobial Agents and Chemotherapy, 2006
- Multidrug-resistance efflux pumps ? not just for resistanceNature Reviews Microbiology, 2006
- Prevalence of subgingival bacteria resistant to aminopenicillins and metronidazole in dental patients from Yemen and NorwayInternational Journal of Antimicrobial Agents, 2006
- Analysis of outer membrane proteome of Escherichia coli related to resistance to ampicillin and tetracyclineProteomics, 2006
- Antimicrobial susceptibility variation of 50 anaerobic periopathogens in aggressive periodontitis: an interindividual variability studyOral Microbiology and Immunology, 2005
- Detection and characterization of β-lactamase genes in subgingival bacteria from patients with refractory periodontitisFEMS Microbiology Letters, 2005
- Actinobacillus actinomycetemcomitans Serotype b Lipopolysaccharide Mediates Coaggregation with Fusobacterium nucleatumInfection and Immunity, 2003
- Genome Analysis of F. nucleatum sub spp vincentii and Its Comparison With the Genome of F. nucleatum ATCC 25586Genome Research, 2003
- Investigations of the Taxonomy and Systematics of Fusobacterium nucleatum Using Allozyme ElectrophoresisInternational Journal of Systematic and Evolutionary Microbiology, 1997
- Characteristics of multimodal co‐aggregation between Fusobacterium nucleatum and streptococciJournal of Periodontal Research, 1995