Mechanism of TNF-α modulation of Caco-2 intestinal epithelial tight junction barrier: role of myosin light-chain kinase protein expression

Abstract
TNF-α plays a central role in the intestinal inflammation of various inflammatory disorders including Crohn's disease (CD). TNF-α-induced increase in intestinal epithelial tight junction (TJ) permeability has been proposed as one of the proinflammatory mechanisms contributing to the intestinal inflammation. The intracellular mechanisms involved in the TNF-α-induced increase in intestinal TJ permeability remain unclear. The purpose of this study was to investigate the possibility that the TNF-α-induced increase in intestinal epithelial TJ permeability was regulated by myosin light-chain kinase (MLCK) protein expression, using an in vitro intestinal epithelial model system consisting of the filter-grown Caco-2 intestinal epithelial monolayers. TNF-α (10 ng/ml) produced a time-dependent increase in Caco-2 MLCK expression. The TNF-α increase in MLCK protein expression paralleled the increase in Caco-2 TJ permeability, and the inhibition of the TNF-α-induced MLCK expression (by cycloheximide) prevented the increase in Caco-2 TJ permeability, suggesting that MLCK expression may be required for the increase in Caco-2 TJ permeability. The TNF-α increase in MLCK protein expression was preceded by an increase in MLCK mRNA expression but not an alteration in MLCK protein degradation. Actinomycin-D prevented the TNF-α increase in MLCK mRNA expression and the subsequent increase in MLCK protein expression and Caco-2 TJ permeability, suggesting that the increase in MLCK mRNA transcription led to the increase in MLCK expression. The TNF-α increase in MLCK protein expression was also associated with an increase in Caco-2 MLCK activity. The cycloheximide inhibition of MLCK protein expression prevented the TNF-α increase in MLCK activity and Caco-2 TJ permeability. Moreover, inhibitors of MLCK, Mg2+-myosin ATPase, and metabolic energy prevented the TNF-α increase in Caco-2 TJ permeability, suggesting that the increase in MLCK activity was required for the TNF-α-induced opening of the Caco-2 TJ barrier. In conclusion, our results indicate for the first time that 1 ) the TNF-α increase in Caco-2 TJ permeability was mediated by an increase in MLCK protein expression, 2 ) the increase in MLCK protein expression was regulated by an increase in MLCK mRNA transcription, and 3 ) the increase in Caco-2 TJ permeability required MLCK protein expression-dependent increase in MLCK activity.