DIRECT AND CORRELATED RESPONSES TO SELECTION ON AGE AT REPRODUCTION INDROSOPHILA MELANOGASTER

Abstract
Aging may be a consequence of mutation accumulation or of negative pleiotropic correlations between performance late and earlier in the lifespan. This study used artificial selection on flies derived from two different base stocks to produce “young” and “old” lines, propagated by breeding from young and old adults respectively. Virgin and mated adults of both sexes from the “old” lines lived longer than “young” line flies. “Young” and “old” mated females did not differ in fecundity or fertility early in the lifespan, but “old” line females had higher fecundity and fertility late in life. The results therefore suggested either that the response to selection had revealed the effect of mutation accumulation, or that pleiotropy involving characters other than early fecundity must have been involved. Development time from egg to adult was longer in the “old” lines. Competition of selected line larvae from one base stock against mutant marked larvae from the same base stock revealed that, at a wide range of larval densities, “old” line larvae showed lower survival rates than “young” line larvae. Thorax length and wet weight were significantly greater in the “old” line flies from one base stock. The results may imply that the selection regime in the “old” lines favored extended growth during development to produce a more durable adult soma, despite the cost in increased larval mortality and delayed reproduction, because the potential reproductive benefits later in life were increased. However, the differences between larvae from “old” and “young” lines could also be attributable to density differences, and this possibility needs systematic investigation.