Identifying combinatorial regulation of transcription factors and binding motifs
- 28 July 2004
- journal article
- research article
- Published by Springer Nature in Genome Biology
- Vol. 5 (8) , R56
- https://doi.org/10.1186/gb-2004-5-8-r56
Abstract
Combinatorial interaction of transcription factors (TFs) is important for gene regulation. Although various genomic datasets are relevant to this issue, each dataset provides relatively weak evidence on its own. Developing methods that can integrate different sequence, expression and localization data have become important. Here we use a novel method that integrates chromatin immunoprecipitation (ChIP) data with microarray expression data and with combinatorial TF-motif analysis. We systematically identify combinations of transcription factors and of motifs. The various combinations of TFs involved multiple binding mechanisms. We reconstruct a new combinatorial regulatory map of the yeast cell cycle in which cell-cycle regulation can be drawn as a chain of extended TF modules. We find that the pairwise combination of a TF for an early cell-cycle phase and a TF for a later phase is often used to control gene expression at intermediate times. Thus the number of distinct times of gene expression is greater than the number of transcription factors. We also see that some TF modules control branch points (cell-cycle entry and exit), and in the presence of appropriate signals they can allow progress along alternative pathways. Combining different data sources can increase statistical power as demonstrated by detecting TF interactions and composite TF-binding motifs. The original picture of a chain of simple cell-cycle regulators can be extended to a chain of composite regulatory modules: different modules may share a common TF component in the same pathway or a TF component cross-talking to other pathways.Keywords
This publication has 55 references indexed in Scilit:
- Complex transcriptional circuitry at the G1/S transition in Saccharomyces cerevisiaeGenes & Development, 2002
- Conserved homeodomain proteins interact with MADS box protein Mcm1 to restrict ECB-dependent transcription to the M/G1 phase of the cell cycleGenes & Development, 2002
- Genome-wide Co-occurrence of Promoter Elements Reveals a cis-Regulatory Cassette of rRNA Transcription Motifs in Saccharomyces cerevisiaeGenome Research, 2002
- Transcriptional Regulatory Networks in Saccharomyces cerevisiaeScience, 2002
- An algorithm for finding protein–DNA binding sites with applications to chromatin- immunoprecipitation microarray experimentsNature Biotechnology, 2002
- Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBFNature, 2001
- Genome-Wide Location and Function of DNA Binding ProteinsScience, 2000
- Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitationNature Biotechnology, 1998
- Extracting regulatory sites from the upstream region of yeast genes by computational analysis of oligonucleotide frequencies 1 1Edited by G. von HeijneJournal of Molecular Biology, 1998
- SWI6 protein is required for transcription of the periodically expressed DNA synthesis genes in budding yeastNature, 1992