Dietary Sodium Loading Increases Arterial Pressure in Afferent Renal–Denervated Rats

Abstract
In rats fed high sodium diet, increasing renal pelvic pressure ≥3 mm Hg activates renal mechanosensory nerves, resulting in a renorenal reflex–induced increase in urinary sodium excretion. The low activation threshold of the renal mechanosensory nerves suggests a role for natriuretic renorenal reflexes in the regulation of arterial pressure and sodium balance. If so, interruption of the afferent renal innervation by dorsal rhizotomy (DRX) at T 9 -L 1 would impair urinary sodium excretion and/or increase arterial pressure during high dietary sodium intake. DRX and sham-DRX rats were fed either a high or a normal sodium diet for 3 weeks. Mean arterial pressure measured in conscious rats was higher in DRX than in sham-DRX rats fed a high sodium diet, 130±2 vs 100±3 mm Hg ( P 2 –mediated release of substance P from the renal pelvic nerves in DRX rats fed either a high or a normal sodium diet, suggesting that DRX resulted in decreased responsiveness of peripheral renal sensory nerves. In conclusion, when the afferent limb of the renorenal reflex is interrupted, a high sodium diet results in increased arterial pressure to facilitate the natriuresis and maintenance of sodium balance.