Abstract
Summary:A generalized $MV$-algebra $\mathcal A$ is called representable if it is a subdirect product of linearly ordered generalized $MV$-algebras. Let $S$ be the system of all congruence relations $\rho $ on $\mathcal A$ such that the quotient algebra $\mathcal A/\rho $ is representable. In the present paper we prove that the system $S$ has a least element

This publication has 10 references indexed in Scilit: