Determination of the dislocation densities in GaN on c-oriented sapphire

Abstract
We report on a comprehensive study of the defect structure in GaN grown on c-oriented sapphire by gas source molecular beam epitaxy and metal organic vapour phase epitaxy. Transmission electron microscopy is used to investigate the defect structures which are dominated by threading dislocations perpendicular to the sapphire surface and stacking faults. Additionally, dislocation densities are determined. For determination of dislocation densities by x-ray diffraction we employ a model that uses the linewidth of x-ray rocking curves for this purpose. Finally, Rutherford backscattering spectrometry is performed to complement the structural investigation.