Direct evidence for the involvement of extracellular proteins in the adhesion of Azospirillum brasilense
- 1 April 1996
- journal article
- Published by Microbiology Society in Microbiology
- Vol. 142 (4) , 855-865
- https://doi.org/10.1099/00221287-142-4-855
Abstract
Adhesion of Azospirillum brasilense to glass and polystyrene was investigated by bringing the cells into contact with the support by sedimentation. Adhesion depended on time and temperature: lower adhesion densities were observed when the contact time was only 2 h or 6 h, as compared to 24 h, or when the test was performed at 4 -C, as compared to 30 °. The influence of cell physiology was further demonstrated by the effect of tetracycline, which inhibited adhesion. Scanning electron microscopy showed that cells produced extracellular material when left in contact with a support for 24 h. The surface elemental composition of cells and of polystyrene supports after cell adhesion and subsequent detachment was determined by X-ray photoelectron spectroscopy; this provided information on the relative concentrations of proteins and polysaccharides at the surface. The protein concentration at the surface of a cell sediment increased as a function of time at 30 °, correlating with an increase of adhesion density. A similar correlation between protein concentration and adhesion density was found when comparing exponentialphase cells with stationary-phase cells. The surface composition of polystyrene supports examined after cell detachment was found to be rich in proteins, indicating that proteins are the major constituent at the support surface. Lowering the contact time, or performing adhesion under unfavourable metabolic conditions (4 °) or in the presence of tetracycline, resulted in a decrease in protein concentration at the support surface, which was correlated with a decrease in adhesion density. The correlation between protein concentration at the cell surface or at the support surface and adhesion density, under different experimental conditions, provides a direct demonstration of the involvement of extracellular proteins in the adhesion of A. brasilense to inert surfaces.Keywords
This publication has 30 references indexed in Scilit:
- Performance of XPS analysis of model biochemical compoundsJournal de Chimie Physique et de Physico-Chimie Biologique, 1995
- The polar flagellum mediates Azospirillum brasilense adsorption to wheat rootsJournal of General Microbiology, 1993
- Anchoring of Azospirillum brasilense to hydrophobic polystyrene and wheat rootsJournal of General Microbiology, 1993
- Homology of the root adhesin of Pseudomonas fluorescens OE 28.3 with porin F of P. neruginosa and P. syringaeMolecular Genetics and Genomics, 1992
- Identification and mapping of loci involved in motility, adsorption to wheat roots, colony morphology, and growth in minimal medium on the Azospirillum brasilense Sp7 90-MDa plasmidPlasmid, 1991
- Purification of a root-adhesive outer membrane protein of root-colonizing Pseudomonas fluorescensFEMS Microbiology Letters, 1991
- Evidence that fibrillar anchoring is essential for Azospirillum brasilense Cd attachment to sandPlant and Soil, 1991
- Calcofluor- and lectin-binding exocellular polysaccharides of Azospirillum brasilense and Azospirillum lipoferumJournal of Bacteriology, 1989
- Attachment ofAzospirillumto isolated plant cellsFEMS Microbiology Letters, 1988
- Adsorption of Azospirillum brasilense to corn rootsSoil Biology and Biochemistry, 1986