Six classes of theories

Abstract
A theory T is said to κ-stable if, given a pair of models UB of T with U of power κ, there are only κ types of elements of B over U (types are defined below). This notion was introduced by Morley (1965) who gave a powerful analysis of ω-stable theories. Shelah (1971) showed that there are only four possibilities for the set of κ in which a countable theory is stable. This partition of all theories into four classes (ω-stable, superstable, stable, and unstable theories) has proved to be of great value. However, most familiar examples of theories are unstable.

This publication has 6 references indexed in Scilit: