Abstract
The perception of mechanical stimuli in the environment is crucial to the survival of all living organisms. Recent advances have led to the proposal of a plant-specific mechanosensory network within plant cells that is similar to the previously described network in animal systems. This sensory network is the basis for a unifying hypothesis, which may account for the perception of numerous mechanical signals including gravitropic, thigmomorphic, thigmotropic, self-loading, growth strains, turgor pressure, xylem pressure potential, and sound. The current state of our knowledge of a mechanosensory network in plants is reviewed, and two mechanoreceptor models are considered: a plasmodesmata-based cytoskeleton–plasma membrane–cell wall (CPMCW) network vs. stretch-activated ion channels. Post-mechanosensory physiological responses to mechanical stresses are also reviewed, and future research directions in the area of mechanoperception and response are recommended.