Thermosyphon Models for Downhole Heat Exchanger Applications in Shallow Geothermal Systems

Abstract
The analysis of downhole heat exchangers used to extract energy from relatively shallow geothermal wells leads to the consideration of several interesting problems of buoyancy-driven heat transfer in enclosures. This paper considers thermosyphoning through and around the wellbore casing which is perforated at two or more depths. Analytical models are developed for thermosyphoning in the cased well both with and without a heat exchanger installed. Theoretical results are compared with experimental values. These comparisons show that the observed energy extraction rates and flow rates through the well casing are possible with thermosyphoning as the only circulation mechanism within the well bore. The model with a heat exchanger installed is parametrically evaluated to illustrate the sensitivity of the model to estimated parameters and the effect of changes in design variables or constraints.

This publication has 0 references indexed in Scilit: