Abstract
Means of solving the non-linear differential equations of plate bending are revieweed and a method based on minimizing the corresponding energy integral is selected as offering most advantages. The energy intergral can be approximated either by using finite-difference approximatons or by assuming a form of displacement variation. Two sets of non-linear algebraic equations (in the in-plane and out-of-plane deflections) are thus formed and, by substitution alternately in each set, the resulting linear equations are solved. Results for simply supported rectangular plates have been worked out in some detail; these are compared with tests made on plates of various aspect ratios. Good agreement on maximum values of stress and deflection was obtained.

This publication has 3 references indexed in Scilit: