Cholesterol depletion and modification of COOH-terminal targeting sequence of the prion protein inhibit formation of the scrapie isoform [published erratum appears in J Cell Biol 1995 Jul;130(2):501]
Open Access
- 1 April 1995
- journal article
- Published by Rockefeller University Press in The Journal of cell biology
- Vol. 129 (1) , 121-132
- https://doi.org/10.1083/jcb.129.1.121
Abstract
After the cellular prion protein (PrPC) transits to the cell surface where it is bound by a glycophosphatidyl inositol (GPI) anchor, PrPC is either metabolized or converted into the scrapie isoform (PrPSc). Because most GPI-anchored proteins are associated with cholesterol-rich membranous microdomains, we asked whether such structures participate in the metabolism of PrPC or the formation of PrPSc. The initial degradation of PrPC involves removal of the NH2 terminus of PrPC to produce a 17-kD polypeptide which was found in a Triton X-100 insoluble fraction. Both the formation of PrPSc and the initial degradation of PrPC were diminished by lovastatin-mediated depletion of cellular cholesterol but were insensitive to NH4Cl. Further degradation of the 17-kD polypeptide did occur within an NH4Cl-sensitive, acidic compartment. Replacing the GPI addition signal with the transmembrane and cytoplasmic domains of mouse CD4 rendered chimeric CD4PrPC soluble in cold Triton X-100. Both CD4PrPC and truncated PrPC without the GPI addition signal (Rogers, M., F. Yehieley, M. Scott, and S. B. Prusiner. 1993. Proc. Natl. Acad. Sci. USA. 90:3182-3186) were poor substrates for PrPSc formation. Thus, it seems likely that both the initial degradation of PrPC to the 17-kD polypeptide and the formation of PrPSc occur within a non-acidic compartment bound by cholesterol-rich membranes, possibly glycolipid-rich microdomains, where the metabolic fate of PrPC is determined. The pathway remains to be identified by which the 17-kD polypeptide and PrPSc are transported to an acidic compartment, presumably endosomes, where the 17-kD polypeptide is hydrolyzed and limited proteolysis of PrPSc produces PrP 27-30.Keywords
This publication has 59 references indexed in Scilit:
- Degeneration of skeletal muscle, peripheral nerves, and the central nervous system in transgenic mice overexpressing wild-type prion proteinsCell, 1994
- Structural studies of the scrapie prion protein using mass spectrometry and amino acid sequencingBiochemistry, 1993
- Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surfacePublished by Elsevier ,1992
- Potocytosis: Sequestration and Transport of Small Molecules by CaveolaeScience, 1992
- Cholesterol controls the clustering of the glycophospholipid-anchored membrane receptor for 5-methyltetrahydrofolate.The Journal of cell biology, 1990
- Distinct transport vesicles mediate the delivery of plasma membrane proteins to the apical and basolateral domains of MDCK cells.The Journal of cell biology, 1990
- Scrapie and cellular prion proteins differ in their kinetics of synthesis and topology in cultured cells.The Journal of cell biology, 1990
- Obligatory Relationship Between the Sterol Biosynthetic Pathway and DNA Synthesis and Cellular Proliferation in Glial Primary CulturesJournal of Neurochemistry, 1986
- Fluorescence Microscopy: Reduced Photobleaching of Rhodamine and Fluorescein Protein Conjugates by n -Propyl GallateScience, 1982
- Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4Nature, 1970