Structural and Dynamical Properties of a Denatured Protein. Heteronuclear 3D NMR Experiments and Theoretical Simulations of Lysozyme in 8 M Urea
- 1 July 1997
- journal article
- research article
- Published by American Chemical Society (ACS) in Biochemistry
- Vol. 36 (29) , 8977-8991
- https://doi.org/10.1021/bi970049q
Abstract
Oxidized and reduced hen lysozyme denatured in 8 M urea at low pH have been studied in detail by NMR methods. 15N correlated NOESY and TOCSY experiments have provided near complete sequential assignment for both 1H and 15N resonances. Over 900 NOEs, including 130 (i, i + 2) and 23 (i, i + 3) NOEs, could be identified by analysis of the NOESY spectra of the denatured states, and 3J(HN, Hα) coupling constants and 15N relaxation rates have been measured. The coupling constant and NOE data were analyzed by comparisons with theoretical predictions from a random coil polypeptide model based on amino acid specific φ,ψ distributions extracted from the protein data bank. There is significant agreement between predicted and experimental NMR parameters suggesting that local conformations of the denatured states are largely determined by short-range interactions within the polypeptide chain. This result is supported by the observation that the chemical shift, coupling constant, and NOE data are little affected by whether or not the four disulfide bridge cross-links are formed in the denatured protein. The relaxation data, however, show significant differences between the oxidized and reduced protein. Analysis of the relaxation data in terms of simple dynamics models provides evidence for weak clustering of hydrophobic groups near tryptophan residues and increased barriers to motion in the more compact conformers formed when the polypeptide chain is cross-linked by the disulfide bridges. Using this information, a structural description of these denatured states is given in terms of an ensemble of conformers, which have a complex relationship between their local and global characteristics.Keywords
This publication has 27 references indexed in Scilit:
- Main-chain Dynamics of a Partially Folded Protein:15N NMR Relaxation Measurements of Hen Egg White Lysozyme Denatured in TrifluoroethanolJournal of Molecular Biology, 1996
- Analysis of Main Chain Torsion Angles in Proteins: Prediction of NMR Coupling Constants for Native and Random Coil ConformationsJournal of Molecular Biology, 1996
- Monitoring Macromolecular Motions on Microsecond to Millisecond Time Scales by R1ρ−R1 Constant Relaxation Time NMR SpectroscopyJournal of the American Chemical Society, 1996
- Comparison between the φ Distribution of the Amino Acids in the Protein Database and NMR Data Indicates that Amino Acids have Various φ Propensities in the Random Coil ConformationJournal of Molecular Biology, 1995
- The Physical Properties of Local Interactions of Tyrosine Residues in Peptides and Unfolded ProteinsJournal of Molecular Biology, 1995
- Local Conformations of Peptides Representing the Entire Sequence of Bovine Pancreatic Trypsin Inhibitor and Their Roles in FoldingJournal of Molecular Biology, 1993
- Interference between J-couplings and cross-relaxation in solution NMR spectroscopy: consequences for macromolecular structure determinationJournal of the American Chemical Society, 1993
- Calibration of the angular dependence of the amide proton-Cα proton coupling constants, 3JHNα, in a globular proteinJournal of Molecular Biology, 1984
- Carbon-13 Fourier Transform Nuclear Magnetic Resonance. X. Effect of Molecular Weight on 13C Spin-Lattice Relaxation Times of Polystyrene in SolutionThe Journal of Chemical Physics, 1972
- Stereochemistry of polypeptide chain configurationsJournal of Molecular Biology, 1963