The r-Process in Neutrino-Driven Winds from Nascent, "Compact" Neutron Stars of Core-Collapse Supernovae

Abstract
We present calculations of r-process nucleosynthesis in neutrino-driven winds from the nascent neutron stars of core-collapse supernovae. A full dynamical reaction network for both the alpha-rich freezeout and the subsequent r-process is employed. The physical properties of the neutrino-heated ejecta are deduced from a general relativistic model in which spherical symmetry and steady flow are assumed. Our results suggest that proto-neutron stars with a large compaction ratio provide the most robust physical conditions for the r-process. The third peak of the r-process is well reproduced in the winds from these ``compact'' proto-neutron stars even for a moderate entropy, \sim 100-200 N_A k, and a neutrino luminosity as high as \sim 10^{52} ergs s^{-1}. This is due to the short dynamical timescale of material in the wind. As a result, the overproduction of nuclei with A \lesssim 120 is diminished (although some overproduction of nuclei with A \approx 90 is still evident). The abundances of the r-process elements per event is significantly higher than in previous studies. The total-integrated nucleosynthesis yields are in good agreement with the solar r-process abundance pattern. Our results have confirmed that the neutrino-driven wind scenario is still a promising site in which to form the solar r-process abundances. However, our best results seem to imply both a rather soft neutron-star equation of state and a massive proto-neutron star which is difficult to achieve with standard core-collapse models. We propose that the most favorable conditions perhaps require that a massive supernova progenitor forms a massive proto-neutron star by accretion after a failed initial neutrino burst.

This publication has 0 references indexed in Scilit: