Abstract
A quasi-static large-signal model of an IMPATT diode with general doping profile is derived. The numerical solution of this model has been implemented in a Fortran IV program which executes economically. This model has been used to analyze large-and small-signal admittances of GaAs double-drift and quasi-Read IMPATT diodes. The small-signal results are in good agreement with calculations done using a linearized small-signal model. The large-signal calculations exhibit power and efficiency saturation when reasonable values of parasitic resistance are included and are in good agreement with experimental GaAs diode performance. The generalized quasi-static formulation simplifies analysis of IMPATT structures with arbitrary doping profiles, specifically those with distributed avalanche zones, by providing the correspondence between these devices and the Read diode model.

This publication has 0 references indexed in Scilit: