A bound for the class of certain nilpotent groups
- 1 August 1965
- journal article
- research article
- Published by Cambridge University Press (CUP) in Journal of the Australian Mathematical Society
- Vol. 5 (4) , 506-511
- https://doi.org/10.1017/s1446788700028536
Abstract
The groups whose 2-generator subgroups are all nilpotent of class at most 2 are nilpotent of class at most 3 (see Levi [6]). Heineken [3] generalized Levi's result by proving that for n ≧ 3, if the n-generator subgroups of a group are all nilpotent of class at most n, then the group itself is nilpotent of class at most n. Other related problems have been considered by Bruck [1].Keywords
This publication has 6 references indexed in Scilit:
- Die endlichen einstufig nichtnilpotenten GruppenPublicationes Mathematicae Debrecen, 2022
- Groups with many nilpotent subgroupsArchiv der Mathematik, 1964
- Generalisations of a classical theorem about nilpotent groupsIllinois Journal of Mathematics, 1964
- Gruppentheoretische Eigenschaften und charakteristische UntergruppenArchiv der Mathematik, 1962
- Über ein Levisches NilpotenzkriteriumArchiv der Mathematik, 1961
- Das “schiefe Produkt” in der GruppentheorieCommentarii Mathematici Helvetici, 1947