Two-Dimensional Periodic Frustrated Ising Models in a Transverse Field

Abstract
We investigate the interplay of classical degeneracy and quantum dynamics in a range of periodic frustrated transverse field Ising systems at zero temperature. We find that such dynamics can lead to unusual ordered phases and phase transitions or to a quantum spin liquid (cooperative paramagnetic) phase as in the triangular and kagome lattice antiferromagnets, respectively. For the latter, we further predict passage to a bond-ordered phase followed by a critical phase as the field is tilted. These systems also provide exact realizations of quantum dimer models introduced in studies of high temperature superconductivity.