Abstract
In this paper we develop a stability theory for broad classes of parametric generalized equations and variational inequalities in finite dimensions. These objects have a wide range of applications in optimization, nonlinear analysis, mathematical economics, etc. Our main concern is Lipschitzian stability of multivalued solution maps depending on parameters. We employ a new approach of nonsmooth analysis based on the generalized differentiation of multivalued and nonsmooth operators. This approach allows us to obtain effective sufficient conditions as well as necessary and sufficient conditions for a natural Lipschitzian behavior of solution maps. In particular, we prove new criteria for the existence of Lipschitzian multivalued and single-valued implicit functions.

This publication has 26 references indexed in Scilit: