Abstract
The eigenvalues Enl(λ) of the Hamiltonian H=Δ1r+λr are analyzed with the help of potential envelopes and kinetic potentials. The result is the following simple approximate eigenvalue formula: λ={2(νE)3νE2[(1+3ν2E)121]}μ[(1+3ν2E)121]3, where E14ν2 is a lower bound to Enl(λ) if ν=μ=(n+l), an upper bound if ν=μ=(2n+l12), and a good approximation when ν=(n+l) and μ=(1.794n+l0.418).