Abstract
Methylmercury (Me-Hg) is widely distributed through freshwater and saltwater food chains and human consumption of fish and shellfish has lead to widespread exposure. Both the U.S. EPA Reference Dose (0.3 μg/kg/day) and the FAO/WHO Permissible Tolerable Weekly Intake (3.3 μg/kg/week) are currently based on the prevention of paraesthesia in adult and older children. However, Me-Hg exposure in utero is known to result in a range of developmental neurologic effects including clinical CNS symptoms and delayed onset of walking. Based on a critical review of developmental toxicity data from human and animal studies, it is concluded that current guidelines for the prevention of paraesthesia are not adequate to address developmental effects. A dose of 0.07 μ/kg/day is suggested as the best estimate of a potential reference dose for developmental effects. Data on nationwide fish consumption rates and Me-Hg levels in fish/seafood weighted by proportion of the catch intended for human consumption are analyzed in a Monte Carlo simulation to derive a probability distribution of background Me-Hg exposure. While various uncertainties in the toxicologic and exposure data limit the precision with which health risk can be estimated, this analysis suggests that at current levels of Me-Hg exposure, a significant fraction of women of childbearing age have exposures above this suggested reference dose.