Abstract
A computational environment suitable for optimum design of structures in the general class of plane frames is described. Design optimization is based on the use of a genetic algorithm in which a population of individual designs is changed generation by generation applying principles of natural selection and survival of the fittest. The fitness of a design is assessed using an objective function in which violations of design constraints are penalized. Facilities are provided for automatic data editing and reanalysis of the structure. The environment is particularly useful when parametric studies are required. The use of the environment is illustrated in a study of a cable‐stayed bridge structure.

This publication has 4 references indexed in Scilit: