Normal forms of elements of classical real and complex Lie and Jordan algebras
- 1 June 1983
- journal article
- research article
- Published by AIP Publishing in Journal of Mathematical Physics
- Vol. 24 (6) , 1363-1374
- https://doi.org/10.1063/1.525868
Abstract
Elements of the classical complex and real Lie and Jordan algebras with involutions are classified into conjugacy classes under the action of the corresponding classical Lie group. Normal forms of representatives of each conjugacy class are chosen so as to resemble the Jordan normal forms of n×n complex matrices. For completeness similar results are given for gl(n,C), gl(n,R), and gl(n,H).This publication has 16 references indexed in Scilit:
- Complex orthogonal and symplectic matrices depending on parametersJournal of Mathematical Physics, 1982
- Zur Klassifikation von Bilinearformen und von Isometrien über KörpernMathematische Zeitschrift, 1981
- Subgroups of Lie groups and separation of variablesJournal of Mathematical Physics, 1981
- Quadratic Hamiltonians in phase space and their eigenstatesJournal of Mathematical Physics, 1980
- Conjugacy classes in linear groupsJournal of Algebra, 1977
- Canonical forms for symplectic and Hamiltonian matricesCelestial Mechanics and Dynamical Astronomy, 1974
- Normal forms for real linear Hamiltonian systems with purely imaginary eigenvaluesCelestial Mechanics and Dynamical Astronomy, 1974
- One-Parameter Subgroups of Unitary Groups with Indefinite Metric and in Particular of the Conformal GroupJournal of Mathematical Physics, 1971
- О строении изометрических преобразований симплектического и ортогонального векторного пространстваUkrainian Mathematical Journal, 1966
- On a Normal Form of the Orthogonal Transformation ICanadian Mathematical Bulletin, 1958