Conceptual Design and Neutronics Analyses of a Fusion Reactor Blanket Simulation Facility

Abstract
A new conceptual design of a fusion reactor blanket simulation facility has been developed. This design follows the principles that have been successfully employed in the Purdue Fast Breeder Blanket Facility (FBBF), where experiments have resulted in the discovery of substantial deficiencies in neutronics predictions. With this design, discrepancies between calculation and experimental data can be nearly fully attributed to calculation methods because design deficiencies that could affect results are insignificant. The conceptual design of this FBBF analog, the Fusion Reactor Blanket Facility, is presented. Essential features are the cylindrical geometry and a distributed line source of 14-MeV neutrons with a cosine-shaped intensity distribution. The source design consists of a deuteron beam sweeping over an elongated titanium-tritide target. To predict the character of the neutron flux this source will produce, neutronics analyses were performed. Predictions for two- and one-dimensional calculati...

This publication has 21 references indexed in Scilit: