Motion after-effects in cat striate cortex elicited by moving gratings

Abstract
Responses of striate cortical neurones to bars of optimal orientation and width, moving with fixed velocity, were recorded in the lightly anaesthetized cat. Effects of periods of pre-adaptation with square-wave gratings of variable spatial frequency and velocity, drifting continuously in each cell's preferred or null directions, were investigated. Variations of cells' directional bias and responsiveness to oriented bars were assessed in relation to the degree and time-course of pre-adaptation to drifting gratings, compared with the preceding level of firing when exposed to uniform backgrounds of the same average luminance. All cells showed some susceptibility to pre-adapting moving gratings: subsequent responses to a bar were initially depressed in the direction of pre-adaptation and, in direction-biased or bidirectional cells, were enhanced in the opposite direction, compared with bar responses following exposure merely to a uniform background. These effects were strongest and most consistent amongst standard complex cells and weakest amongst special complex cells: maximal effects were obtained with adapting gratings of optimal velocity and spatial frequency.