Sparse reconstruction by convex relaxation: Fourier and Gaussian measurements

Abstract
This paper proves best known guarantees for exact reconstruction of a sparse signal f from few non-adaptive universal linear measurements. We consider Fourier measurements (random sample of frequencies of f) and random Gaussian measurements. The method for reconstruction that has recently gained momentum in the sparse approximation theory is to relax this highly non-convex problem to a convex problem, and then solve it as a linear program. What are best guarantees for the reconstruction problem to be equivalent to its convex relaxation is an open question. Recent work shows that the number of measurements k(r,n) needed to exactly reconstruct any r-sparse signal f of length n from its linear measurements with convex relaxation is usually O(r poly log (n)). However, known guarantees involve huge constants, in spite of very good performance of the algorithms in practice. In attempt to reconcile theory with practice, we prove the first guarantees for universal measurements (i.e. which work for all sparse functions) with reasonable constants. For Gaussian measurements, k(r,n) lsim 11.7 r [1.5 + log(n/r)], which is optimal up to constants. For Fourier measurements, we prove the best known bound k(r, n) = O(r log(n) middot log2(r) log(r log n)), which is optimal within the log log n and log3 r factors. Our arguments are based on the technique of geometric functional analysis and probability in Banach spaces.

This publication has 11 references indexed in Scilit: