The Role of Conductivity Variations Within Artificial Pits During Anodic Dissolution

Abstract
Owing to restricted mass transport, the conductivity of electrolytic solution within occluded regions may be different from that of the bulk electrolyte outside the occluded regions. Experimental and theoretical investigations have been carried out on artificial copper pits (length to diameter ratio between 0.93 and 10.3) dissolving in binary copper sulfate solutions (0.001–0.5M at 25°C) in order to clarify conditions under which conductivity effects are appreciable. Both potentiostatic (50–1500 mV) and galvanostatic (1.2–6.8 mA/ cm2) data agree with a mathematical model which includes charge transfer, ohmic, geometric, and unsteady‐state mass transport processes. The model generates dimensionless criteria by which the importance of conductivity changes in other chemical systems can be estimated.

This publication has 0 references indexed in Scilit: