Heat shock and thermotolerance during early rat embryo development

Abstract
Effects of heat shock on the development of early pre‐somite embryos have been studied using cultured rat embryos. The results illustrate the sensitivity of the developing head and brain to elevated temperatures prior to neural tube closure and the capacity of embryos to acquire thermotolerance. Embryos exposed briefly to an elevated temperature (43°C for 7.5 min) developed severe craniofacial defects including microphthalmia, microcephaly, gross reduction of the forebrain region, and open neural tubes. In contrast, a nonteratogenic heat shock (42°C for 10 min) caused embryos to acquire thermotolerance during a 15‐min recovery period at 38.5°C. Acquired thermotolerance was effective in protecting embryos from a subsequent more severe heat treatment which would have been teratogenic in an unprotected embryo. Recovering embryos mounted a heat shock response as evidenced by the induction of a 71 kilodalton heat shock protein. Activation of the heat shock response was not a teratogenic event in the developing embryo.