Generalized de la Vallée Poussin Disconjugacy Tests for Linear Differential Equations(1)
- 1 September 1971
- journal article
- Published by Canadian Mathematical Society in Canadian Mathematical Bulletin
- Vol. 14 (3) , 419-428
- https://doi.org/10.4153/cmb-1971-073-3
Abstract
In this paper, we study the oscillatory behavior of the solutions of the linear differential equation (1.1) where (1.2) and all functions are assumed to be continuous on a bounded interval [a, b). An «th-order linear equation is said to be disconjugate on an interval I provided it has no nontrivial solution with more than n — 1 zeros, counting multiplicities, in I.Keywords
This publication has 5 references indexed in Scilit:
- Asymptotic Behaviour of Disconjugate nth Order Differential EquationsCanadian Journal of Mathematics, 1971
- On disconjugacy criteriaProceedings of the American Mathematical Society, 1970
- Conjugate points and simple zeros for ordinary linear differential equationsTransactions of the American Mathematical Society, 1969
- Properties of solutions ofn-th order linear differential equationsPacific Journal of Mathematics, 1965
- Sur la distance entre les zéros de l'équation différentielle linéaire du troisième ordreAnnales Polonici Mathematici, 1963