Reversible and Irreversible Adhesion of Motile Escherichia coli Cells Analyzed by Total Internal Reflection Aqueous Fluorescence Microscopy
Open Access
- 1 June 2002
- journal article
- research article
- Published by American Society for Microbiology in Applied and Environmental Microbiology
- Vol. 68 (6) , 2794-2801
- https://doi.org/10.1128/aem.68.6.2794-2801.2002
Abstract
The initial events in bacterial adhesion are often explained as resulting from electrostatic and van der Waals forces between the cell and the surface, as described by DLVO theory (developed by Derjaguin, Landau, Verwey, and Overbeek). Such a theory predicts that negatively charged bacteria will experience greater attraction toward a negatively charged surface as the ionic strength of the medium is increased. In the present study we observed both smooth-swimming and nonmotile Escherichia coli bacteria close to plain, positively, and hydrophobically coated quartz surfaces in high- and low-ionic-strength media by using total internal reflection aqueous fluorescence microscopy. We found that reversibly adhering cells (cells which continue to swim along the surface for extended periods) are too distant from the surface for this behavior to be explained by DLVO-type forces. However, cells which had become immobilized on the surface did seem to be affected by electrostatic interactions. We propose that the “force” holding swimming cells near the surface is actually the result of a hydrodynamic effect, causing the cells to swim at an angle along the glass, and that DLVO-type forces are responsible only for the observed immobilization of irreversibly adhering cells. We explain our observations within the context of a conceptual model in which bacteria that are interacting with the surface may be thought of as occupying one of three compartments: bulk fluid, near-surface bulk, and near-surface constrained. A cell in these compartments feels either no effect of the surface, only the hydrodynamic effect of the surface, or both the hydrodynamic and the physicochemical effects of the surface, respectively.Keywords
This publication has 48 references indexed in Scilit:
- Reversal of Flagellar Rotation Is Important in Initial Attachment of Escherichia coli to Glass in a Dynamic System with High- and Low-Ionic-Strength BuffersApplied and Environmental Microbiology, 2002
- Nanometer Distances between Swimming Bacteria and Surfaces Measured by Total Internal Reflection Aqueous Fluorescence MicroscopyLangmuir, 2001
- Influence of Fluid Velocity and Cell Concentration on the Transport of Motile and Nonmotile Bacteria in Porous MediaEnvironmental Science & Technology, 1998
- Biofilm parameters influencing biocide efficacyBiotechnology & Bioengineering, 1995
- The effects of pH, ionic strength and polyvalent ions on the cell surface hydrophobicity of Escherichia coli evaluated by the BATH and HIC methodsInternational Journal of Pharmaceutics, 1995
- The motion of a rigid body in viscous fluid bounded by a plane wallJournal of Fluid Mechanics, 1989
- Bacterial adhesion: A physicochemical approachMicrobial Ecology, 1989
- Behavior ofPseudomonas fluorescens within the hydrodynamic boundary layers of surface microenvironmentsMicrobial Ecology, 1987
- Mechanism of the Initial Events in the Sorption of Marine Bacteria to SurfacesJournal of General Microbiology, 1971
- A Method for Measuring the Motility of Bacteria and for Comparing Random and Non-random MotilityJournal of General Microbiology, 1967