Effects of low root temperature on sap flow rate, soluble carbohydrates, nitrate contents and on cytokinin and gibberellin levels in root xylem exudate of sand‐grown tomato

Abstract
Tomato (Lycopersicon esculuntum Mill.) grown in open fields in dry land areas or in non‐controlled greenhouses are subjected to substantial daily changes in root temperature. In the field, root‐zone temperatures fluctuate both diurnally and during the growing season. The purpose of this study was to monitor root‐zone temperature effects on tomato initial growth, transpiration, sap flow rate, leaf and air temperatures differences, nitrate accumulation, total nitrogen, and soluble carbohydrates in the shoot and roots as well as levels of endogenous cytokinins and gibberellins in xylem exudate. Tomato seedlings were grown in three growth cabinets with variable control of root temperatures. Three day/night root temperature regimes (12/12, 16/8 and 20/20°C) were employed. Low day root temperatures of 12 and 16°C reduced shoot dry weight by 47 and 26%, root dry weight by 36 and 14%, shoot nitrate by 79 and 50%, root nitrate by 49 and 16%, levels of cytokinins in root xylem exudate by 27 and 13% and gibberellins by 65 and 23%, in relation to the respective values of 20°C day root temperature. Soluble carbohydrates in the shoot and roots were increased significantly (18 and 111%) by 12°C root temperature. The main effects of low root temperatures on shoot growth stem from slow upward transport of plant hormones and nitrate rather than reduction in their rate of biosynthesis or entry to the root, respectively.