Refined X-ray Structures of the Oxidized, at 1.3 Å, and Reduced, at 1.17 Å, [2Fe−2S] Ferredoxin from the Cyanobacterium Anabaena PCC7119 Show Redox-Linked Conformational Changes
- 1 November 1999
- journal article
- research article
- Published by American Chemical Society (ACS) in Biochemistry
- Vol. 38 (48) , 15764-15773
- https://doi.org/10.1021/bi991578s
Abstract
The chemical sequence of the [2Fe-2S] ferredoxin from the cyanobacterium AnabaenaPCC7119 (Fd7119) and its high-resolution X-ray structures in the oxidized and reduced states have been determined. The Fd7119 sequence is identical to that of the ferredoxin from the PCC7120 strain (Fd7120). X-ray diffraction data were collected at 100 K with an oxidized trigonal Fd7119 crystal, at 1.3 A resolution, and with an orthorhombic crystal, previously reduced with dithionite and flash frozen under anaerobic conditions, at 1.17 A resolution. The two molecular models were determined by molecular replacement with the [2Fe-2S] ferredoxin from the strain PCC7120 (Rypniewski, W. R., Breiter, D. R., Benning, M. M., Wesenberg, G., Oh, B.-H., Markley, J. L., Rayment, I., and Holden, H. M. (1991) Biochemistry 30, 4126-4131.) The final R-factors are 0. 140 (for the reduced crystal) and 0.138 (for the oxidized crystal). The [2Fe-2S] cluster appears as a significantly distorted lozenge in the reduced and oxidized redox states. The major conformational difference between the two redox forms concerns the peptide bond linking Cys46 and Ser47 which points its carbonyl oxygen away from the [2Fe-2S] cluster ("CO out") in the reduced molecule and toward it ("CO in") in the oxidized one. The "CO out" conformation could be the signature of the reduction of the iron atom Fe1, which is close to the molecular surface. Superposition of the three crystallographically independent molecules shows that the putative recognition site with the physiological partner (FNR) involves charged, hydrophobic residues and invariant water molecules.Keywords
This publication has 12 references indexed in Scilit:
- Crystal structure of the oxidised and reduced acidic cytochrome c3 from Desulfovibrio africanusJournal of Molecular Biology, 1999
- Probing the Function of the Invariant Glutamyl Residue 312 in Spinach Ferredoxin-NADP+ ReductaseJournal of Biological Chemistry, 1998
- On the role of the acidic cluster Glu 92–94 of spinach ferredoxin IBiochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 1997
- X-ray Structure of the Ferredoxin:NADP+Reductase from the CyanobacteriumAnabaenaPCC 7119 at 1.8 Å Resolution, and Crystallographic Studies of NADP+Binding at 2.25 Å ResolutionJournal of Molecular Biology, 1996
- AMoRe: an automated package for molecular replacementActa Crystallographica Section A Foundations of Crystallography, 1994
- Published by Taylor & Francis ,1991
- MOLSCRIPT: a program to produce both detailed and schematic plots of protein structuresJournal of Applied Crystallography, 1991
- Structure of the [2Fe-2S]ferredoxin I from the blue-green Alga Aphanothece sacrum at 2·2 Å resolutionJournal of Molecular Biology, 1990
- Structure of the semiquinone form of flavodoxin from Clostridium MPJournal of Molecular Biology, 1977
- Synthetic analogs of the active sites of iron-sulfur proteins. XI. Synthesis and properties of complexes containing the iron sulfide (Fe2S2) core and the structures of bis[o-xylyl-.alpha.,.alpha.'-dithiolato-.mu.-sulfido-ferrate(III)] and bis[p-tolylthiolato-.mu.-sulfido-ferrate(III)] dianionsJournal of the American Chemical Society, 1975