Abstract
In this paper neural network (NN) control techniques for non-model based PD controlled robot manipulators are proposed. The main difference between the proposed technique and the existing feedback error learning (FEL) technique is that compensation of robot dynamics uncertainties is done outside the control loop by modifying the desired input trajectory. By using different NN training signals, two NN control schemes are developed. One is comparable to that in the FEL technique and another has to deal with the Jacobian of the PD controlled robot dynamic system. Performances of both controllers for various trajectories with different PD controller gains are examined and compared with that of the FEL controller. It is shown that the new control technique performed better and robust to PD controller gain variations.

This publication has 0 references indexed in Scilit: